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1 Introduction

The development of gauge/gravity duality [1–4] has provided the opportunity to study

strongly coupled gauge theories. One of the most beautiful aspects of this subject is that

gauge theory phenomena take on a geometric character in the dual gravity picture. For

example, confinement was shown in [5] to be related to the Hawking-Page transition in

gravity, and chiral symmetry breaking was shown to be related to the geometry of brane

embeddings in [6].

Recently, there has been interest in studying holographic systems in backgrounds

with electromagnetic fields [7–11], and at finite baryon density [12–15] and combinations

thereof [16].

In this note we further investigate a proposal made in [13] for the development of a

fermi surface in a holographic model of large N QCD. In that paper a baryon chemical

potential was added to the Sakai-Sugimoto model [6] by turning on the gauge field on the

probe D8 brane. This gauge field was sourced by string ends on the D8 brane and it was

found the minimum energy configuration with fixed baryon number had a sharp cutoff in

the positions of the string endpoints. As the baryon number was increased, it was found

that the position of the cut off moved from the interior toward the boundary of the space.

This is interesting because of a combination of two factors: the position of the string ends

are interpreted as fundamental quarks in the holographic picture, and the interior of the

space corresponds to the infrared of the field theory whereas the boundary corresponds to
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“unfilled”

“filled”

σc

Figure 1. This sketch of the mechanism shows string endpoints occupying some region (shown

in blue) below some critical point, labelled here by σc, which is the location of the putative fermi

surface. The region below σc, in the interior of the space, is then considered the “filled” region and

the “unfilled” region, toward the boundary of the space, is above.

the ultraviolet. This suggests that the sharp cutoff in string endpoints is a sharp cutoff

in the energies of quarks, with increasing numbers of quarks corresponding to an increase

in the energy of the cutoff. This sort of behaviour is what we would expect of a fermi

surface for quarks, and the authors of [13] proposed that it is just that. See figure 1 for a

sketch of this.

An interesting feature of this proposal is that in some sense the fermi statistics were

an emergent phenomena in the holographic description. They arose from the mutual elec-

trostatic repulsion of the string ends.

The system considered in [13] was a 3 + 1-dimensional gauge-theory with massless

fundamental quarks. In this note we investigate whether this mechanism persists in other

theories. There are two sources of motivation for this. If this mechanism is peculiar feature

of the Sakai-Sugimoto model, then it should not be thought of as the formation of a fermi

surface, but could be a hallmark of some other interesting physics. One can, in principle,

construct other brane intersections that describe strongly coupled fermions. If these sys-

tems do not exhibit this mechanism, that suggests that the mechanism is not indicating

the presence of a fermi surface. Conversely, if we can show that this mechanism exists in a

class of other models, then it is interesting to understand what types of examples we can

construct. Since strongly coupled fermions are of interest in many areas of physics it is of

interest to establish that there are diverse examples of systems that exhibit this mechanism.

In section 2 we describe the set of systems we will consider, and establish our notation

and conventions. The systems include those arising from brane intersections and N = 4

SYM on R × S3. In section 3 we will review the mechanism found in [13]. We will then

look for this mechanism in a broad class of systems, and establish precise conditions for

when it does and does not occur. We will find that the conditions for the non-formation of
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a putitive fermi surface at finite density are extremely restrictive. The class of systems for

which a putative fermi surface does develop includes strongly coupled lower dimensional

systems that may be relevant for condensed matter physics. We discuss our findings in

section 4.

2 Probe brane setup

In order to explore this putative mechanism for a holographic fermi surface we are interested

in studying systems with fermions in the fundamental representation of the gauge group.

In this work we will restrict ourselves to keeping the number of flavours fixed to one. To

introduce this single flavour, we will embed a single brane in the background geometry, and

work in the probe limit. In [13], the system under study was the Sakai-Sugimoto model [6]

in which a probe D8-D8 pair is embedded in the background of Nc D4 branes wrapped on

a circle. Anti-periodic boundary conditions are taken for the fermions around the circle, as

proposed in [5], so that, at energies much smaller than the Kaluza-Klein scale, the adjoint

sector is pure Yang-Mills theory. The resulting theory is a 3 + 1-dimensional gauge theory

with fundamental fermions.

In this work, we are interested in understanding if the mechanism for a fermi surface

proposed in [13] persists in other holographic constructions of strongly coupled gauge the-

ories. To this end we will consider two classes of systems. The first class, including the

Sakai-Sugimoto model, is constructed from D(p+1)-Dq or D(p+1)-Dq-Dq configurations.

In the second class is N = 4 SYM on R× S3 which is dual to global AdS.

2.1 D(p+1)-Dq or D(p+1)-Dq-Dq systems

In this subsection we will discuss systems that can be constructed from embedding a probe

Dq brane in a D(p+1)-brane background. They are of interest in the context of looking

for systems that develop fermi surfaces because they generically include light fermions that

come from the string ground state in the Ramond sector. We will adopt conventions similar

to those in [17–19]. The metric and dilaton for these systems have the form

ds2 =

(

U

Rp

)
6−p

2
(

ηµνdx
µdxν + f(U)dx2

p+1

)

+

(

Rp

U

)
6−p

2
(

dU2

f(U)
+ U2dΩ2

7−p

)

,

eφ =
g2
YM

(2π)p−1(α′)
p−2
2

(

Rp

U

)

(6−p)(2−p)
4

,

(2.1)

where

f(U) = 1 −

(

U0

U

)6−p

,

R6−p
p = g2

YMNcdp(α
′)

6−p

2 ,

dp = 25−2pπ
6−3p

2 Γ

(

6 − p

2

)

.

(2.2)
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The quantity U0 determines the size of the compact xp+1 direction according to

RKK

U0
=

4π

6 − p

(

Rp

U0

)
6−p

2

. (2.3)

It is convenient to define a new coordinate ρ according to

U
6−p

2 = ρ
6−p

2 +
U6−p

0

4ρ
6−p

2

, (2.4)

so that the metric has the form

ds2 =

(

U

Rp

)
6−p

2
(

ηµνdx
µdxν + f(U)dx2

p+1

)

+

(

Rp

U

)
6−p

2 U2

ρ2

(

dρ2 + ρ2dΩ2
7−p

)

. (2.5)

In this form it is clear that the transverse directions are conformal to flat space, and to

facilitate the brane embedding, we will write these coordinates as

dρ2 + ρ2dΩ2
7−p = dλ2 + λ2dΩ2

l + dy2 + y2dΩ2
6−l−p , (2.6)

where ρ2 = λ2 + y2. In these coordinates we will take the brane to be extended in the λ

and Ωl directions and sit at a point on Ω6−l−p.

We will embed a single Dq brane that intersects m of the field theory space directions,

wraps a = 0, 1 of the Kaluza-Klein directions1, as well as filling the λ direction and an Sl

in the transverse directions. If a = 0 the brane configuration is of the form

t p KK λ

D(p+1) × × · · · × × · · · × × • • · · · • • · · · •

Dq × × · · · × • · · · • • × × · · · × • · · · •

Dq × × · · · × • · · · • • × × · · · × • · · · •

m l

(2.7)

and if a = 1 it is

t p KK λ

D(p+1) × × · · · × × · · · × × • • · · · • • · · · •

Dq × × · · · × • · · · • × × × · · · × • · · · •

m l

(2.8)

The Born-Infeld action for the embedded brane is

S = −µqωlR
a
KK

∫

dm+a+1x

∫

dλH(ρ)λl

√

1 + y′2 −
ρ2

U2
Ã′2 , (2.9)

where ωl is the volume of Sl, Ã = 2πα′A0, and

H(ρ) =

(

1 −

(

U0

U

)6−p
)

a
2 (U

ρ

)l+1( U

Rp

)

(6−p)(4−#ND)
4

, (2.10)

1If the Dq brane does not wrap the Kaluza-Klein direction, we will assume that it sits at a fixed point.
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where

#ND = p+ l −m− a+ 2 (2.11)

is the number of Neumann-Dirichlet directions. Systems with a = 0 will be D(p+1)-Dq-Dq

systems and those with a = 1 will be D(p+1)-Dq systems.

To introduce baryons, we will use the idea of [20]. In each D(p+1) brane background

is an S7−p carrying flux. We will wrap D(7-p) branes on this sphere, and to satisfy the

Gauss law constraint on the sphere there must be Nc strings ending on each D(7-p) brane.

The other ends will sit on the Dq brane and provide a source for electric flux on the brane.

A D(7-p) brane at a position U has the Born-Infeld action

S = −µ7−pR
6−p
p ω7−p

∫

dtU . (2.12)

The action for a collection of baryons with density ρB(λ, x) is, therefore,

SB = −µ7−pR
6−p
p ω7−p

∫

dm+a+1x

∫

dλUρB(λ, x) . (2.13)

In what follows we will take the baryon density to be homogeneous in the field theory space

directions, ρB(λ, x) = ρB(λ). There is also the effect of the string ends on the Dq brane,

whereby the electromagnetic coupling contributes a term to the action of the form

Ss =
Nc

2πα′

∫

dm+a+1x

∫

dλρB(λ)Ã . (2.14)

2.2 Global AdS5 × S5

In this section we will consider D7 branes probing global AdS5 × S5. We will use the

Fefferman-Graham coordinates

ds2 = R2

(

−
1

4

(

1

z
+ z

)2

dt2 +
dz2

z2
+

1

4

(

1

z
− z

)2

dΩ2
3 + dθ2 + sin2 θdφ2 + cos2 θdΩ̄2

3

)

(2.15)

where z = 1 is the centre of AdS, and the boundary is at z = 0.

We will then consider the D7 embedding where it fills AdS5 as well wrapping an

S3 ⊂ S5. The DBI action for this embedding takes the form

S = −N

∫

dΩ3

∫

dΩ̄3

∫

dt

∫

dz cos3 θf1(z)

√

f2(z)

(

1

z2
+ θ′2

)

− Ã′(z)2 (2.16)

where

f1(z) =

(

1

2

(

1

z
− z

))3

, f2(z) =

(

1

2

(

z +
1

z

))2

, (2.17)

N = R8µ7, and Ã = 2πα′A0/R
2. Here R4 = 4πgsNcα

′2 and µ7 = ((2π)7gsα
′4)−1.

Again this background carries flux, in this case through S5. We will introduce baryons

by wrapping D5 branes on this S5. A D5 brane at position z will contribute to the action

S = −R6µ5ω5

∫

dt
1

2

(

z +
1

z

)

(2.18)
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The action for a collection of baryons with density ρB(z, t,Ω3) is, therefore,

SB = R6µ5ω5

∫

dt

∫

dΩ3

∫

dz
1

2

(

z +
1

z

)

ρB(z, t,Ω3) (2.19)

Again, we will take configurations that are homogeneous in the field theory directions so

that ρB(z, t,Ω3) = ρB(z). There is also the effect of the string endpoints that has the form

Ss =
NcR

2

2πα′

∫

dt

∫

dΩ3

∫

dzÃ(z)ρB(z) (2.20)

3 Finding the Fermi surface

3.1 General considerations

In this section we will investigate the brane constructions we set out in the last section

in the presence of baryons. We begin by noting that in all of the brane constructions we

presented above, the Born-Infeld action for the probe brane took the form2

S = −

∫

dσf(y, y′, σ)
√

1 − g(y, y′, σ)A′2 . (3.1)

There are additional contributions to the action from the string end points and the masses

of the branes

S′ = Nc

∫

dσρBA−

∫

dσρBM(y, σ) . (3.2)

Altogether, these give an equation of motion for the gauge field as

d

dσ

∂L

∂A′
= NcρB . (3.3)

It will be convenient to use the electric flux

E ≡
∂L

∂A′
=

fgA′

√

1 − gA′2
, (3.4)

or equivalently

gA′2 =
E2/g

f2 + E2/g
, (3.5)

which means the equation of motion for A is

E′ = NcρB . (3.6)

There will be two generic cases we would like to consider, either the probe brane extends

from σ = ∞ to σ = −∞, which we will call case 1, or ends at some σ = σ0, which we will

call case 2.3 We can integrate the equation of motion for E to find that in case 1

2E∞ = nBNc , (3.7)

2We have absorbed the overall constant in f , as it will not play a role in our analysis.
3We are to free reparametrize σ so that σ0 = 0 for convenience.
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or in case 2

E∞ = nBNc . (3.8)

Putting this together we find

S′ =

∫

dσE′A−
1

Nc

∫

dσE′M(y, σ) , (3.9)

and integrating by parts gives

S′ = 2µE∞ −

∫

dσ
E2/g

√

f2 +E2/g
−

1

Nc

∫

dσE′M(y, σ) , (3.10)

for case 1, or

S′ = µE∞ −

∫

dσ
E2/g

√

f2 + E2/g
−

1

Nc

∫

dσE′M(y, σ) , (3.11)

for case 2. Similarly, substituting A′ in terms of E in S gives

S = −

∫

dσ
f2

√

f2 + E2/g
, (3.12)

so that the total action is

Stotal = −

∫

dσ
√

f2 + E2/g + 2µE∞ −
1

Nc

∫

dσE′M(y, σ) , (3.13)

for case 1, or

Stotal = −

∫

dσ
√

f2 + E2/g + µE∞ −
1

Nc

∫

dσE′M(y, σ) , (3.14)

for case 2. We have eliminated the gauge field entirely from the action by expressing it in

terms of the baryon charge density. We therefore find that the energy density is either

E =

∫

dσ
√

f2 + E2/g − 2µE∞ +
1

Nc

∫

dσE′M(y, σ) , (3.15)

for case 1, or

E =

∫

dσ
√

f2 + E2/g − µE∞ +
1

Nc

∫

dσE′M(y, σ) , (3.16)

for case 2.

The system will seek the minimum energy configuration, so we would like to minimize

this energy against the baryon charge density, subject to the constraint that the overall

baryon number is fixed. To ensure local minimization we vary with respect to E and find

as a result that
E2

g
=

f2gM ′2/N2
c

1 − gM ′2/N2
c

. (3.17)

It is this condition we will analyze to determine when a putative fermi surface will develop.

– 7 –



J
H
E
P
0
3
(
2
0
0
9
)
0
1
9

3.2 The Sakai-Sugimoto model

To understand how the putative fermi surface arises we will first consider the simplest

example, the Sakai-Sugimoto model at non-zero baryon chemical potential. This has been

considered previously in [13], in which the mechanism was first proposed. It will be useful

to reconsider what happens in this simplest case, and to describe it in our notation before

passing on to more general considerations.

The Sakai-Sugimoto model is constructed by starting with D4 branes compactified on

a circle with anti-periodic (supersymmetry breaking) boundary conditions for the fermions.

At low energies the theory is then weakly coupled pure Yang-Mills theory with a large num-

ber of colours Nc [5]. In the supergravity limit it is described by the background geometry

ds2 =

(

U

R3

)
3
2
(

ηµνdx
µdxν + f(U)dx2

4

)

+

(

R3

U

)
3
2 U2

λ2

(

dλ2 + λ2dΩ2
4

)

,

eφ =
g2
YM

(2π)2(α′)
1
2

(

U

R3

)
3
4

,

(3.18)

where4

f(U) = 1 −
1

U3
,

U
3
2 = λ

3
2 +

1

4λ
3
2

.
(3.19)

This geometry is what one gets by putting p = 3 in the general setup above. Flavour is

introduced by placing D8 and D8 branes at the antipodal points on the compact circle,

x4. In the limit that the number of D8-D8 pairs Nf is much less than the number of

colours, Nf ≪ Nc, the D8-D8 can be treated as probing the geometry of the D4 branes

and backreaction can be neglected. The action for the probe is given by

S = −µ8ω4R
3
2
3

∫

d4x

∫

dλ

λ
U

7
2

√

1 −
λ2

U2
Ã′2 . (3.20)

The field theory this setup describes at low energies, relative to the compactification scale,

is a 3+1-dimensional gauge theory with only gluons in the adjoint sector and Nf flavours

of fermions in the fundamental representation.

Baryons are introduced by wrapping D4 branes on the transverse S4, and we will

consider a density of baryons in the field theory directions, giving the action

SB = −µ4R
3
3ω4

∫

d4x

∫

dλUρB(λ) . (3.21)

The final contribution comes from the interaction of the string ends with the electromag-

netic field on the D8 brane which gives the action

Ss =
Nc

2πα′

∫

d4x

∫

dλρB(λ)Ã . (3.22)

4We’ve set U0 = 1 for convenience.
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The various terms making up the total action are of the general form in (3.1) and (3.2) of

the previous section.

In section 2 we considered a general class of systems of probe branes embedded in

D-brane backgrounds. In the notation of section 2, the Sakai-Sugimoto model is a system

with p = 3, q = 8, a = 0, m = 3, l = 4, and #ND = 6. In that notation then ρ = λ, and

we can set y = y′ = 0 since it does not appear. This is because the D8 brane wraps the

entire transverse S4. Because of this, the Sakai-Sugimoto model is the simplest setting to

look for this fermi surface. The form of the embedding, in terms of the functions f , g and

M ′ given in section 3.1, is then

f(λ) ∝
U7/2

λ
,

g(λ) =
λ2

U2
,

M(λ) ∝ U .

(3.23)

We would like to now consider the form of the electric field that minimizes the energy. It

is given by (3.17) with f and g as above and

M ′ ∝
U

λ

4λ3 − 1

4λ3 + 1
. (3.24)

Let us consider now what happens when λ is large. Asymptotically f → ∞, g → 1,

and M ′ → 1. Explicitly, this means that the form of the electric field that minimizes the

energy density is

E ∝ λ5/2 (3.25)

for large λ, and clearly grows without bound toward the boundary. However, the asymp-

totic value of E determines the baryon number density, which we are keeping fixed, so it is

not consistent for it to grow without bound. In fact, since E must not decrease, once the

electric field reaches the value E∞ that sets the baryon number density, the best we can do

to minimize the energy is to set the electric field equal to its asymptotic value. This means

that there is some critical λ past which E is constant. Since in this region E is constant,

then by (3.6) ρB must vanish in this region. However, large magnitudes for λ correspond

to large energies, so that having vanishing baryon density above the critical λ means that

the quarks are all below some sharp energy cutoff. This energy cutoff was proposed in [13]

as the development of a quark fermi surface.

3.3 Other D(p+1)-Dq-Dq systems

The mechanism which was proposed in [13] for the formation of a Fermi surface, and repro-

duced above, occurred in one example among the brane constructions we have considered

in 2. We would like to now understand if this mechanism can be generalized to other sys-

tems. The motivation for this is twofold. If we fail to reproduce this mechanisms in other

systems with strongly coupled fermions, that would suggest that this mechanism represents

some other physics than the formation of a fermi surface. Conversely, if this mechanism

– 9 –
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can be reproduced in other systems with strongly coupled fermions, it would be suggestive

that it might indeed indicate the formation of a fermi surface. In that case, it is interesting

to understand in what settings it persists, and in particular to determine if there might be

any that may be of relevance to condensed matter physics.

The systems we will consider can be divided into three cases, those for which, asymp-

totically, y′ → 0, y′ → constant, or y′ diverges. The Sakai-Sugimoto model, as considered

in [13] and the previous subsection, has y′ = 0. We will first consider systems in this class.

They have the asymptotic behaviour

f ∼ σl+
(6−p)(4−#ND)

4 , g ∼ 1 , M ′ ∼ 1 . (3.26)

This implies that for large σ, the electric field that minimizes the energy is given by,

according to (3.17),

E ∼ σl+ (6−p)(4−#ND)
4 , (3.27)

which diverges when l + (6−p)(4−#ND)
4 > 0. In appendix A we show that systems with

#ND = 4 have y → constant asymptotically, and therefore y′ → 0. Therefore, when

these systems have l ≥ 1 the local minimum for E diverges for large σ, and the same

mechanism for the development of a fermi surface, which was found in [13] and reproduced

above, occurs.

Suppose, alternatively, that l + (6−p)(4−#ND)
4 ≤ 0. In the case that the inequality is

strict, this would indicate that asymptotic value of the electric field vanishes. Since this

asymptotic value of the electric field dictates that the baryon density must also vanish,

then the system does not contain any baryons, and therefore we would not expect a fermi

surface to form.

In the marginal case of l+ (6−p)(4−#ND)
4 = 0 the electric field would asymptote smoothly

to some finite value E∞. This would suggest that the charge density vanishes smoothly as

we approach the boundary. Though we expect that generically most of the quarks will still

sit at lower energy scales their density in this case should be given by a smooth distribution

that vanishes at high energies. In particular, this would indicate that a fermi surface is not

forming, even though we may expect one a priori.

As a result, in the case that y′ → 0 asymptotically, we may only find that a putative

fermi surface does not form, when we expect one to, if

l + (6−p)(4−#ND)
4 = 0 . (3.28)

This can be rewritten in a more illuminating way. In the notation we have introduced above,

the fermions coming from introducing some Dq brane are confined to an m-dimensional

defect in a p+1-dimensional gauge theory. Expressing (3.28) in terms of these parameters,

only when the dimension of the defect is given by

m =
(p − 2)(7 − p− q)

2(4 − p)
(3.29)

can we not have a putative fermi surface at finite density when y′ → 0 asymptotically.

It is straightforward to check that in the examples we are most interested in, p = 1, 2, 3,
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that this is only possible if m = 0. To emphasize, in this case, only when the fermions are

localized on a point-like defect is it possible for the putative fermi surface to not develop.

Some remarks are in order. As we discuss in appendix A, the asymptotic separa-

tion of the branes sets the quark mass. The above analysis showing that the putative

mechanism for the fermi surface occurs was independent of the asymptotic value of the

brane separation, as long as it was finite. This means that the mechanism is insensitive

to the quark mass. In the system considered in [13] the quarks were massless, so we have

shown this mechanism is also viable for massive quarks. We also point out that the sys-

tems for which this mechanism occurs include the 1+1-dimensional D2-D4-D4 system, the

2 + 1-dimensional D3-D5-D5 system, and the 3 + 1-dimensional D4-D6-D6 system. These

lower dimensional systems are interesting because they may serve as useful toy models for

condensed matter physics.

Next, consider the marginal case in which y′ → constant asymptotically. The behaviour

in this case is similar to that in the previous one; the asymptotic behaviour of the functions

f and g just gain constant coefficients that depend on the asymptotic value of y′, but they

scale with σ in the same way. This indicates that, again, the only way that we could have

the non-formation of a putative fermi surface in interesting systems is if the fermions are

confined to a point-like defect.

Finally, consider the other case that y′ diverges for large σ. Suppose that, for large σ,

y′ ∼ σk for some k > 1.5 Asymptotically we have the behaviour

f ∼ σl+
(6−p)(4−#ND)

4
−k , g ∼

1

σ2k
, M ′ ∼ 1 . (3.30)

This implies that the form of the electric field that minimizes the energy is, according

to (3.17),

E ∼ σl+ (6−p)(4−#ND)
4

−3k , (3.31)

which diverges when l+ (6−p)(4−#ND)
4 > 3k. Systems that satisfy this requirement will also

exhibit the mechanism in [13] for the development of a putative fermi surface.

If we consider the in which l+ (6−p)(4−#ND)
4 < 3k then the asymptotic electric field and

consequently baryon density both vanish. This happened in the previous two cases as well,

and it is not surprising that a fermi surface would not form under these circumstances.

Only the marginal case of l + (6−p)(4−#ND)
4 = 3k is therefore interesting. Again, writing

this in terms of the dimensionality of the defect, the gauge theory and the probe branes

we find a putative fermi surface doesn’t form only when the degree of divergence is

k =
1

12
(2m(4 − p) − (p − 2)(7 − p− q)) . (3.32)

In this case we would still expect that most of the quarks would sit at lower energy scales,

but the distribution must vanish smoothly at higher energies.

Let us now summarize the main results of this subsection. We first considered two

cases in which the embedding function y had either the asymptotic behaviour y′ → 0 or

5In general we might also want to have some logarithmic dependence on σ as well, but this does not

have any effect on our conclusions.
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y′ → constant. We found in these cases that the only circumstance in which we would not

have the formation of a fermi surface at finite density is in a p+ 1-dimensional field theory

with fermions coming from a Dq flavour brane that are localized on an m-dimensional

defect where

m =
(p− 2)(7 − p− q)

2(4 − p)
. (3.33)

We also pointed out that for systems of interest, where p ≤ 3, can only be satisfied by

m = 0, i.e. by fermions localized at a point. We considered a further class of systems in

which the embedding function had the asymptotic behaviour y′ → ∞. We found that, if

the asymptotic behaviour was such that y′ ∼ σk for some k > 1 in a holographic description

of a p+1-dimensional field theory with fermions coming from a Dq flavour brane that that

are localized on an m-dimensional defect, only when

k =
1

12
(2m(4 − p) − (p − 2)(7 − p− q)) , (3.34)

would a fermi surface not form at finite density. The two conditions (3.33) and (3.34)

on the non-formation of a putative fermi surface at finite density are quite restrictive and

indicate that generically we should expect one to form.

3.4 D(p+1)-Dq systems

The analysis in the previous section carries over almost unchanged to the case of D(p+1)-

Dq systems. Note that the only modification is that the function H(ρ) picks up a factor of
√

1 −

(

U0

U

)6−p

, (3.35)

as does, therefore, the function f of section 3.1. This factor asymptotes to unity, so that

the conditions (3.33) and (3.34) found above hold for D(p+1)-Dq systems as well.

An interesting example system for this case is the D4-D6 system where the D6 brane

intersects two of the field theory directions. This system has a 3 + 1-dimensional gauge

field with fundamental particles localized on a 2 + 1-dimensional defect.

3.5 Global AdS5 × S5

We would like to consider the asymptotics of this system. They have been analyzed previ-

ously in [21]. There it was shown that

θ(z) ∼ θ0z + θ2z
3 + 2θ0z

3 ln z + · · · . (3.36)

These asymptotics are not altered by an asymptotically constant E, which we demand to

have fixed baryon number.6 We need to also consider the asymptotics of the functions that

appear in (3.17), they are

M ′ ∼ −
1

2z2
, g ∼ 4z4 , f ∼

1

16z5
. (3.37)

Together, these imply that E diverges as z → 0. As before, this indicates the development

of a putative fermi surface. Note the dual field theory in this case is N = 4 SYM on R×S3,

so this mechanism also works in the case of a field theory on a compact space.

6It can be checked that the asymptotic value of E only enters this expansion at order z9 ln z.

– 12 –



J
H
E
P
0
3
(
2
0
0
9
)
0
1
9

4 Discussion

In this paper we have considered a broad class of holographic systems at finite baryon

chemical potential. This was motivated by a proposal in [13] of a mechanism for the de-

velopment of a fermi surface in a holographic model of large N QCD. We found that the

mechanism for the formation of a putative fermi surface persists across a broad class of

models. This suggests that the mechanism is not a peculiar feature of the Sakai-Sugimoto

model that results from one of its particular features, e.g. massless quarks, it’s dimension-

ality, the fact it’s fermions are not localized on a defect, or that the embedding is simple

because the flavour branes fill the transverse S4. The systems we have studied are therefore

useful for two reasons. They give some reason to believe that this mechanism may indeed

describe the formation of a fermi surface, because it does occur in a wide class of systems

with strongly coupled fermions at finite density. They are also interesting because they

comprise a variety systems including lower dimensional ones that could find application in

condensed matter physics for understanding strongly coupled phenomena in which fermi

surfaces play an important role.

If the mechanism we have described in this note does indeed indicate the development

of a fermi surface, the picture we have presented here is somewhat rudimentary. The

theory of strongly coupled fermi liquids is a well developed subject (see, e.g. [22]), and

there are general expectations for what features systems such as those under study here

should exhibit. One such feature is the phenomenon of zero sound. Investigations of zero

sound in holographic settings at finite density have been carried out recently in [23–25].

The zero sound modes in these cases were identified with fluctuations of the probe flavour

branes, and the investigations were carried out without explicitly including a source for

the baryon charge density. A fermi surface has not been identified in the absence of the

sources, so this might suggest that an explicit fermi surface is not important in finding zero

sound in holographic constructions. This seems confusing because zero sound is associated

with deforming the fermi surface. Another way of identifying a fermi surface is by finding a

pole in the retarded current-current correlation function. Such an investigation was carried

out for the Sakai-Sugimoto model in [25] but that analysis failed to reveal the expected

pole. However, the analysis was carried out in the absence of the putative fermi surface we

considered here, and it does not seem unreasonable that if a similar analysis was carried

out with it included, a sharp cutoff in the charge density might produce such a pole.

Having now established the existence of a putative fermi surface in a diverse set of

examples, it would be particularly interesting to investigate what effect the presence of

the putative fermi surface has on the thermodynamics and the spectrum of low energy

excitations, as well as to look for a zero sound mode. It is difficult, in the general framework

we have used in this paper, to address general features of the low energy spectrum for

the whole class of systems under consideration, for example the existence of poles in the

retarded current-current two-point function. It would interesting to revisit this question in

the Sakai-Sugimoto model as was done in [25] to determine if the existence of the putative

fermi surface we have described above is sufficient to produce the expected pole. Such

a study is also of particular interest in some of the lower dimensional examples that we
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have considered because of their potential applications for condensed matter physics. A

further interesting question is to understand how the systems respond to external electric

and magnetic fields. We leave these investigations to future work.
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A Systems with #ND = 4

In this section we will consider a set of supersymmetric systems. The systems we will

consider have a = 0 and #ND = 4.

First consider the situation in which the gauge field on the Dp brane is not turned on.

This will allow us to determine the relationship between the asymptotics of the embedding

function and the masses of the quarks and the value of the quark condensate in the gauge

theory.

In this case it is convenient to make all the quantities in the action dimensionless by

taking U0 = 1. We would like to consider embeddings in which y → y∞ as we take λ→ ∞.

The equation of motion has the asymptotic form

∂λ(λly′) =
l + 1

2
λp+l−8y . (A.1)

This equation can be recast as a Bessel equation, and has the general solution

y(λ) = A
1

λ
l−1
2

J l−1
6−p

(

√

2(l + 1)

6 − p

1

λ
6−p

2

)

+B
1

λ
l−1
2

J
− l−1

6−p

(

√

2(l + 1)

6 − p

1

λ
6−p

2

)

, (A.2)

where J are the usual Bessel functions. To determine the asymptotic behaviour we note

that Jα(x) ∼ xα for small x, which means that, for l > 1,7 term multiplied by A goes to a

constant for λ≫ 1, and the term multiplied by B goes like λ−(l−1).

Following the analysis in [18] if we have the asymptotic behaviour

y(λ) ∼ y∞ +
c

λl−1
(A.3)

then the quark mass will be

mq =
U0y∞
2πα′

(A.4)

7For l ≤ 1 one of the solutions diverges for large λ indicating that the equation (A.1) is only valid for

l > 1.
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and the condensate will be

〈

ψ̄ψ
〉

= −2πα′µq(l − 1)ωlU
l
0c . (A.5)

If we now turn on the gauge field, when l > 1, similar considerations give

Ã ∼ µ̃−
c̃

λl−1
, (A.6)

where µ̃ is related to the chemical potential µ by

µ̃ =
1

2πα′
µ , (A.7)

and c̃ determines the number of baryons according to

c̃ =
nBNc

2(l − 1)µqωl
. (A.8)
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